高二数学知识点总结

时间:2023-01-24 19:36:15
高二数学知识点总结集合15篇

高二数学知识点总结集合15篇

总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以提升我们发现问题的能力,不如立即行动起来写一份总结吧。我们该怎么去写总结呢?下面是小编为大家收集的高二数学知识点总结,仅供参考,希望能够帮助到大家。

高二数学知识点总结1

【不等关系及不等式】

一、不等关系及不等式知识点

1.不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba

3.不等式的性质

(1)对称性:ab

(2)传递性:ab,ba

(3)可加性:aa+cb+c,ab,ca+c

(4)可乘性:ab,cacb0,c0bd;

(5)可乘方:a0bn(nN,n

(6)可开方:a0

(nN,n2).

注意:

一个技巧

作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

一种方法

待定系数法:求代数式的范围时,先用已知的 ……此处隐藏11566个字……函数零点时,所写的一定是一个数字,而不是一个坐标。

2、对函数零点存在的判断中,必须强调:

(1)、f(x)在[a,b]上连续;

(2)、f(a)·f(b)<0;

(3)、在(a,b)内存在零点。

这是零点存在的一个充分条件,但不必要。

3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。

利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点。

四判断函数零点个数的常用方法

1、解方程法:

令f(x)=0,如果能求出解,则有几个解就有几个零点。

2、零点存在性定理法:

利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。

3、数形结合法:

转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。

已知函数有零点(方程有根)求参数取值常用的方法

1、直接法:

直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

2、分离参数法:

先将参数分离,转化成求函数值域问题加以解决。

3、数形结合法:

先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

《高二数学知识点总结集合15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式