数学必修一第四章知识点总结

时间:2022-12-20 00:14:04
数学必修一第四章知识点总结

数学必修一第四章知识点总结

总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,为此我们要做好回顾,写好总结。总结一般是怎么写的呢?下面是小编为大家整理的数学必修一第四章知识点总结,欢迎大家分享。

数学必修一第四章知识点总结1

基本初等函数有哪些

基本初等函数包括以下几种:

(1)常数函数y = c( c为常数)

(2)幂函数y = x^a( a为常数)

(3)指数函数y = a^x(a>0, a≠1)

(4)对数函数y =log(a) x(a>0, a≠1,真数x>0)

(5)三角函数以及反三角函数(如正弦函数:y =sinx反正弦函数:y = arcsin x等)

基本初等函数性质是什么

幂函数

形如y=x^a的函数,式中a为实常数。

指数函数

形如y=a^x的函数,式中a为不等于1的正常数。

对数函数

指数函数的反函数,记作y=loga a x,式中a为不等于1的正常数。指数函数与对数函数之间成立关系式,loga ax=x。

三角函数

即正弦函数y=sinx,余弦函数y=cosx,正切函数y=tanx,余切函 ……此处隐藏1450个字……+∞)区间为增函数,a越大,图像坡度越大。

⑶a<0时,幂函数在(0,+∞)区间为减函数。

当x从右侧无限接近原点时,图像无限接近y轴正半轴;

当y无限接近正无穷时,图像无限接近x轴正半轴。

幂函数总图见下页。

4、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。

反函数图像与原函数图像关于直线y=x对称。

数学函数的奇偶性知识点

1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).

正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).

2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式。

学数学的用处

第一,实际生活中数学学得好可以帮助你在工作上解决工程类或财务类的技术问题。就大多数情况来看,不能解决技术问题的人不仅收入较差而且还要到基层去从事低等体力劳动,能解决技术问题的人就可以拿高工资在办公室当工程师或者财务人员。

第二,数学可以使你的大脑变得更加聪明,增加你思维的严谨性,另外,数学对你其它科目的学习也有很大作用。

第三,数学无处不在,工作学习中都用得着,例如日常逛街买东西都是和数学有关的,这时候才能体会到学习数学的好处。

《数学必修一第四章知识点总结.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式