高三数学复习资料
高三数学复习资料1简单地说C是组合,也可以理解为没有顺序要求的情况;A是排列,需要有不同的顺序。
比如你写的C(4,1)就是指在4个里面选1个。没有顺序(1个本来就没有顺序,但2个以上也同样不用考虑顺序问题。)
你写的A(5,3)就是在5个里面选3个,但这3个不同的顺序算作不同的情况。
现举例说明A(5,3)和C(5,3)的区别。
如:12345这5个数,选其中的三个数,共有C(5,3)=10种选法。列举为(123)、(124)、(125)、(134)、(135)、(145)、(234)、(235)、(245)、(345)共10种。
同样这5个数,如果组成没有复数字的三位数,就是A(5,3)=60种。123、132、213、231、312、321也就是原来的一种组合现在变成了6种情况了。
公式更简单。C(4,1)=4/1=4
C(5,3)=(5*4*3)/(3*2*1)
C(7,2)=(7*6)/(2*1)
也就是分子是下标依次递减相乘,乘的个数正好是上标的个数。
分母就是上标的阶乘。
A(5,3)=5*4*3
A(8,6)=8*7*6*5*4*3
A(4,2)=4*3
也就是只有组合时分子的情况,没有分母。
高三数学复习资料21.进行集合的交、并、补运算时,不要忘了全集和空集的特 ……此处隐藏1931个字……中.
(6)两直线平行与垂直
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
高三数学复习资料5 不等式的意义考纲要求
1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式
(1)|a+b|≤|a|+|b|;
(2)|a-b|≤|a-c||+|c-b|
(3)会利用绝对值的几何意义求解以下类型的不等式:
|ax+b|≤c,|ax+b|≥c;|x-c|+|x-b|≤a
2.了解柯西不等式的不同形式,理解他们的几何意义,并会证明
(1)柯西不等式向量形式:|α||β|≥|α·β|
(2) x1-x2 2+ y1-y2 2+ x2-x3 2+ y2-y3 2≥ x1-x3 2+ y1-y3 2(通常称作平面三角不等式)
3.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.
4.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、缩放法.
不等式的应用考纲要求
1.会用基本不等式解决简单的最大(小)值问题.
2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
考纲研读
近几年的高考试题增强了对密切联系生产和生活实际的应用性问题的考查力度.主要有两种方式:
(1)线性规划问题:求给定可行域的面积;求给定可行域的最优解;求目标函数中参数的范围.
(2)基本不等式的应用:一是侧重“正”、“定”、“等”条件的满足条件;二是用于求函数或数列的最值.